第1章緒論
1.1研究背景及意義
1.1.1高壓直流輸電
1.1.2氣體絕緣管道輸電
1.1.3直流GIL的絕緣問題
1.2國內外研究現(xiàn)狀
1.2.1氣固界面電荷積聚的早期研究基礎
1.2.2氣固界面電荷積聚的近期研究動態(tài)
1.2.3氣固界面電荷積聚的研究現(xiàn)狀小結
1.2.4氣固界面電荷積聚研究存在的問題
1.3本書的主要工作
第2章基于縮比GIL的氣固界面電荷測量系統(tǒng)設計
2.1靜電探頭法的測量原理
2.1.1無源靜電探頭的測量原理
2.1.2有源靜電探頭的測量原理
2.1.3有源靜電探頭對電場的影響
2.2基于縮比GIL的氣固界面電荷測量平臺
2.2.1絕緣子制作和電極結構設計
2.2.2實驗裝置和測量平臺
2.3二維平面的氣固界面電荷測量平臺
2.4粉塵圖的制作
2.5本章小結
第3章基于數(shù)字圖像處理技術的氣固界面電荷反演算法
3.1電荷反演問題的提出
3.2平移改變系統(tǒng)的電荷反演算法
3.2.1平移改變系統(tǒng)及其傳遞函數(shù)矩陣元素
3.2.2傳遞函數(shù)矩陣的病態(tài)特性
3.2.3基于吉洪諾夫正則化的維納濾波器
3.2.4基于點擴散函數(shù)的空間分辨率分析
3.2.5仿真算例及計算精度分析
3.3平移不變系統(tǒng)的電荷反演算法
3.3.1平移不變系統(tǒng)算法設計的基本原理
3.3.2二維傅里葉變換和維納濾波器
3.3.3系統(tǒng)的空間分辨率分析
3.3.4仿真算例和計算精度分析
3.4實測效果和算法驗證
3.5本章小結
第4章直流電場中氣固界面電荷積聚特性及其動力學模型
4.1氣固界面電荷積聚實驗現(xiàn)象
4.1.1空氣中的氣固界面電荷積聚現(xiàn)象
4.1.2SF6中的氣固界面電荷積聚現(xiàn)象
4.2氣固界面電荷積聚的兩種模式
4.2.1基本模式
4.2.2電荷斑模式
4.3氣固界面電荷積聚的動力學模型
4.3.1建立模型
4.3.2實驗結果與仿真結果的對比
4.3.3仿真體積電導率對電荷積聚的影響
4.3.4仿真表面電導率對電荷積聚的影響
4.4對氣固界面電荷積聚理論的實驗驗證
4.4.1不同體積電導率的絕緣子表面電荷積聚
4.4.2溫度梯度下的絕緣子表面電荷積聚
4.4.3高離子濃度氣體中的絕緣子表面電荷積聚
4.5本章小結
第5章氣固界面電荷消散特性及其動力學模型
5.1實驗設計
5.1.1實驗樣品
5.1.2充電電路
5.1.3研究內容
5.2環(huán)氧樹脂材料表面電荷消散的觀測
5.2.1開放氣體空間中的氣固界面電荷消散
5.2.2有限氣體空間中的氣固界面電荷消散
5.2.3離子風中的氣固界面電荷消散
5.3氣固界面電荷消散的動力學過程建模
5.4數(shù)值計算結果與實驗結果的對比
5.4.1體電導主導的氣固界面電荷消散
5.4.2氣體離子中和主導的氣固界面電荷消散
5.4.3面電導主導的氣固界面電荷消散
5.5材料的本征電荷消散與表面陷阱能級
5.5.1等溫電流衰減理論
5.5.2陷阱密度與表面電位衰減
5.5.3表面電位衰減測量和表面陷阱能級計算
5.6本章小結
第6章抑制表面電荷積聚的環(huán)氧復合材料改性探究
6.1環(huán)氧樹脂材料本體改性的研究
6.1.1Al2O3納米顆粒摻雜
6.1.2富勒烯摻雜
6.2環(huán)氧樹脂材料表面改性的研究
6.2.1表面氟化處理
6.2.2二維納米涂層
6.3本章小結
第7章結論
參考文獻
在學期間發(fā)表的學術論文與研究成果
致謝
Contents
1Introduction
1.1Research Background and Significance
1.1.1High Voltage Direct Current Transmission
1.1.2Gas Insulated Transmission Line
1.1.3Insulation Problems of GIL
1.2Research Status of GasSolid Interface Charge
Accumulation
1.2.1Early Research Basis
1.2.2Recent Research Trends
1.2.3Brief Summary of Research Status
1.2.4Existing Problems
1.3Main Contents of This Book
2Design of Surface Charge Measurement System for Downsized
GIL Model
2.1Measurement Principle of the Electrostatic Probe
2.1.1Measurement Principle of Passive Electrostatic
Probe
2.1.2Measurement Principle of Active Electrostatic
Probe
2.1.3Effect of Active Electrostatic Probe on Electric
Field
2.2Surface Charge Measuerment Platform Based on A
Downsized GIL
2.2.1Manufacture of Insulators and Design of Electrode
System
2.2.2Experimental Setup and Measurement Platform
2.3Surface Charge Measurement Platform for 2D Surface
2.4Production of DustFigure
2.5Summary
3Inversion Algorithm of Surface Charge Calculation Based on the
Digital Image Processing Technique
3.1Propose of the Inversion Algorithm for Surface Charge
Calculation
3.2Inversion Algorithm for ShiftVariant System
3.2.1ShiftVariant System and Transfer Function Matrix
Components
3.2.2The IllPosed Feature of Transfer Function
Matrix
3.2.3Wiener Filter Based on Tikhonov’s Regularization
3.2.4Spatial Resolution of the Algorithm Based on
the PSF
3.2.5Numerical Simulations and Accuracy Analysis
3.3Inversion Algorithm for ShiftInvariant System
3.3.1The Principle of Algorithm for ShiftInvariant
System
3.3.22D Fourier Transform and Wiener Filter
3.3.3Spatial Resolution Analysis
3.3.4Numerical Simulations and Accuracy Analysis
3.4Expreiment Results and the Verify of Algorithm
3.5Summary
4Surface Charge Accumulation Characteristics and Its Kinetic Model
4.1Experimental Phenomenon of Surface Charge
Accumulation
4.1.1Surface Charge Accumulation in the Air
4.1.2Surface Charge Accumulation in the SF6
4.2Two Patterns of GasSolid Interface Charge
Accumulation
4.2.1Dominant Uniform Charging
4.2.2Charge Speckles
4.3Simulation Model of GasSolid Interface Charge
Accumulation
4.3.1Model Building
4.3.2Comparison of Experimental Results and Simulation
Results
4.3.3Influence of Volume Conductivity on Charge
Accumulation
4.3.4Influence of Surface Conductivity on Charge
Accumulation
4.4Experimental Validation of Surface Charge Accumulation
Theory
4.4.1Influence of Volumn Conductivity
4.4.2Surface Charge Accumulation Under Temperature
Gradient
4.4.3Surface Charge Accumulation In Ionizing Gas
4.5Summary
5Surface Charge Dissipation Characteristics and Its Kinetic Model
5.1Experimental Design
5.1.1Test Samples
5.1.2Charging Circuit
5.1.3Research Contents
5.2Observation of Surface Charge Dissipation of Epoxy Resin
5.2.1Surface Charge Dissipation In Free Gas Volume
5.2.2Surface Charge Dissipation in Limited Gas Volume
5.2.3Surface Charge Dissipation in Ionizing Air
5.3Modeling of the Kinetic Process of Surface Charge
Dissipation
5.4Comparision of Numerical Calculations and Experimental
Results
5.4.1Surface Charge Decay Dominated by Volumn
Conducivity
5.4.2Surface Charge Decay Dominated by Gas
Neutralization
5.4.3Surface Charge Decay Dominated by Surface
Conducivity
5.5The Intrinsic Charge Dissipation and Surface Trap Energy of
Insulator
5.5.1Isothermal Current Decay theory
5.5.2Trap Denisity and Surface Potential Decay
5.5.3Surface Potential Decay Measurement and Surface
Trap Energy Caculation
5.6Summary
6Material Modification to Suppress Surfce Charge Accumulation
6.1Bulk Modification of Epoxy Resin Material
6.1.1Al2O3Filled EpoxyResin
6.1.2FullereneFilled EpoxyResin
6.2Surface Modification of Epoxy Resin Material
6.2.1Fluorination of Insulator Surface
6.2.22D NanoLaminar Coating
6.3Summary
7Conclusions
References
Published Papers and Achievements
Acknowledgements