<ins id="931dn"></ins>
<dl id="931dn"><video id="931dn"></video></dl>
<big id="931dn"><acronym id="931dn"><tfoot id="931dn"></tfoot></acronym></big><thead id="931dn"><div id="931dn"></div></thead>
  • <ins id="931dn"><sup id="931dn"><tfoot id="931dn"></tfoot></sup></ins><ins id="931dn"><acronym id="931dn"><code id="931dn"></code></acronym></ins>
    注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
    讀書(shū)網(wǎng)-DuShu.com
    當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)工業(yè)技術(shù)建筑科學(xué)建筑設(shè)計(jì)Java數(shù)據(jù)分析(影印版)

    Java數(shù)據(jù)分析(影印版)

    Java數(shù)據(jù)分析(影印版)

    定 價(jià):¥94.00

    作 者: John R.Hubbard
    出版社: 東南大學(xué)出版社
    叢編項(xiàng):
    標(biāo) 簽: 暫缺

    購(gòu)買(mǎi)這本書(shū)可以去


    ISBN: 9787564177362 出版時(shí)間: 2018-08-01 包裝:
    開(kāi)本: 頁(yè)數(shù): 字?jǐn)?shù):  

    內(nèi)容簡(jiǎn)介

      數(shù)據(jù)分析是包含檢查、清洗、轉(zhuǎn)化和建模的整個(gè)過(guò)程,旨在發(fā)現(xiàn)有用的信息。Java是實(shí)現(xiàn)數(shù)據(jù)分析任務(wù)的流行語(yǔ)言之一?!禞ava數(shù)據(jù)分析(影印版 英文版)》將提供數(shù)據(jù)科學(xué)和相關(guān)流程步驟的快速概覽。你將從中學(xué)到統(tǒng)計(jì)數(shù)據(jù)分析技巧,并通過(guò)流行的Java API和類(lèi)庫(kù)把它們實(shí)現(xiàn)。你還能在實(shí)際案例中學(xué)到諸如分類(lèi)和回歸之類(lèi)的機(jī)器學(xué)習(xí)概念。在這個(gè)過(guò)程中,你將熟悉RapidMinet和Weka等工具,了解這些Java工具如何更有效地用于分析。還會(huì)學(xué)到如何與關(guān)系型、NoSQL和時(shí)間序列數(shù)據(jù)打交道?!禞ava數(shù)據(jù)分析(影印版 英文版)》也將介紹如何利用不同的Java類(lèi)庫(kù)創(chuàng)建富有洞見(jiàn)又容易理解的圖表。學(xué)完《Java數(shù)據(jù)分析(影印版 英文版)》,你將對(duì)多種數(shù)據(jù)分析技巧和相應(yīng)的Java實(shí)現(xiàn)擁有扎實(shí)的基礎(chǔ)知識(shí)。

    作者簡(jiǎn)介

    暫缺《Java數(shù)據(jù)分析(影印版)》作者簡(jiǎn)介

    圖書(shū)目錄

    Preface
    Chapter 1: Introduction to Data Analysis
    Origins of data analysis
    The scientific method
    Actuarial science
    Calculated by steam
    A spectacular example
    Herman Hollerith
    ENIAC
    VisiCalc
    Data, information, and knowledge
    Why Java?
    Java Integrated Development Environments
    Summary
    Chapter 2: Data Pre_processing
    Data types
    Variables
    Data points and datasets
    Null values
    Relational database tables
    Key fields
    Key-value pairs
    Hash tables
    File formats
    Microsoft Excel data
    XML and JSON data
    Generating test datasets
    Metadata
    Data cleaning
    Data scaling
    Data filtering
    Sorting
    Merging
    Hashing
    Summary
    Chapter 3: Data Visualization
    Tables and graphs
    Scatter plots
    Line graphs
    Bar charts
    Histograms
    Time series
    Java implementation
    Moving average
    Data ranking
    Frequency distributions
    The normal distribution
    A thought experiment
    The exponential distribution
    Java example
    Summary
    Chapter 4: Statistics
    Descriptive statistics
    Random sampling
    Random variables
    Probability distributions
    Cumulative distributions
    The binomial distribution
    Multivariate distributions
    Conditional probability
    The independence of probabilistic events
    Contingency tables
    Bayes' theorem
    Covariance and correlation
    The standard normal distribution
    The central limit theorem
    Confidence intervals
    Hypothesis testing
    Summary
    Chapter 5: Relational Databases
    The relation data model
    Relational databases
    Foreign keys
    Relational database design
    Creating a database
    SQL commands
    Inserting data into the database
    Database queries
    SQL data types
    JDBC
    Using a JDBC PreparedStatement
    Batch processing
    Database views
    Subqueries
    Table indexes
    Summary
    Chapter 6: Regression Analysis
    Linear regression
    Linear regression in Excel
    Computing the regression coefficients
    Variation statistics
    Java implementation of linear regression
    Anscombe's quartet
    Polynomial regression
    Multiple linear regression
    The Apache Commons implementation
    Curve fitting
    Summary
    Chapter 7: Classification Analysis
    Decision trees
    What does entropy have to do with it?
    The ID3 algorithm
    Java Implementation of the ID3 algorithm
    The Weka platform
    The ARFF filetype for data
    Java implementation with Weka
    Bayesian classifiers
    Java implementation with Weka
    Support vector machine algorithms
    Logistic regression
    K-Nearest Neighbors
    Fuzzy classification algorithms
    Summary
    Chapter 8: Cluster Analysis
    Measuring distances
    The curse of dimensionality
    Hierarchical clustering
    Weka implementation
    K-means clustering
    K-mecloids clustering
    Affinity propagation clustering
    Summary
    Chapter 9: Recommender Systems
    Utility matrices
    Similarity measures
    Cosine similarity
    A simple recommender system
    Amazon's item-to-item collaborative filtering recommender
    Implementing user ratings
    Large sparse matrices
    Using random access files
    The Netflix prize
    Summary
    Chapter 10: NoSQL Databases
    The Map data structure
    SQL versus NoSQL
    The Mongo database system
    The Library database
    Java development with MongoDB
    The MongoDB extension for geospatial databases
    Indexing in MongoDB
    Why NoSQL and why MongoDB?
    Other NoSQL database systems
    Summary
    Chapter 11:Data Analysis with Java
    Scaling, data striping, and sharding
    Google's PageRank algorithm
    Google's MapReduce framework
    Some examples of MapReduce applications
    The WordCount example
    Scalability
    Matrix multiplication with MapReduce
    MapReduce in MongoDB
    Apache Hadoop
    Hadoop MapReduce
    Summary
    Appendix: Java Tools
    The command line
    Java
    NetBeans
    MySQL
    MySQL Workbench
    Accessing the MySQL database from NetBeans
    The Apache Commons Math Library
    The javax JSON Library
    The Weka libraries
    MongoDB
    Index

    本目錄推薦

    掃描二維碼
    Copyright ? 讀書(shū)網(wǎng) talentonion.com 2005-2020, All Rights Reserved.
    鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)